make_example_dataframe_list¶
- make_example_dataframe_list(n_cases: int = 10, n_channels: int = 1, min_n_timepoints: int = 8, max_n_timepoints: int = 12, n_labels: int = 2, regression_target: bool = False, random_state: int | None = None, return_y: bool = True) list[DataFrame] | tuple[list[DataFrame], ndarray][source]¶
Randomly generate list of DataFrame X and numpy y for testing.
Generates data in ‘df-list’ format.
Will ensure there is at least one sample per label if a classification label is being returned (regression_target=False).
- Parameters:
- n_casesint
The number of samples to generate.
- n_channelsint
The number of series channels to generate.
- min_n_timepointsint
The minimum number of features/series length to generate for individual series.
- max_n_timepointsint
The maximum number of features/series length to generate for individual series.
- n_labelsint
The number of unique labels to generate.
- regression_targetbool
If True, the target will be a scalar float, otherwise an int.
- random_stateint or None
Seed for random number generation.
- return_ybool, default = True
Return the y target variable.
- Returns:
- Xlist of pd.DataFrame
Randomly generated potentially unequal length 3D data.
- ynp.ndarray
Randomly generated labels if return_y is True.
Examples
>>> from aeon.testing.data_generation import make_example_dataframe_list >>> from aeon.utils.validation.collection import get_type >>> data, labels = make_example_dataframe_list( ... n_cases=2, ... n_channels=2, ... min_n_timepoints=4, ... max_n_timepoints=6, ... n_labels=2, ... random_state=0, ... ) >>> print(data) [ 0 1 0 0.000000 1.688531 1 1.715891 1.694503 2 1.247127 0.768763 3 0.595069 0.113426, 0 1 0 2.000000 3.166900 1 2.115580 2.272178 2 3.702387 0.284144 3 0.348517 0.080874] >>> print(labels) [0 1] >>> get_type(data) 'df-list'