Segmentation

Time series segmentation involves partitioning a series into regions that are dissimilar to neighboring regions. The aeon.segmentation module contains algorithms and tools for time series segmentation.

BinSegmenter([n_cps, model, min_size, jump])

BinSeg (Binary Segmentation) Segmenter.

ClaSPSegmenter([period_length, n_cps, ...])

ClaSP (Classification Score Profile) Segmentation.

FLUSSSegmenter([period_length, n_regimes, ...])

FLUSS (Fast Low-cost Unipotent Semantic Segmentation) Segmenter.

InformationGainSegmenter([k_max, step])

Information Gain based Temporal Segmentation (GTS) Estimator.

GreedyGaussianSegmenter([k_max, lamb, ...])

Greedy Gaussian Segmentation Estimator.

EAggloSegmenter([member, alpha, penalty])

Hierarchical agglomerative estimation of multiple change points.

HMMSegmenter(emission_funcs, transition_prob_mat)

Implements a simple HMM fitted with Viterbi algorithm.

HidalgoSegmenter([metric, K, zeta, q, ...])

Heteregeneous Intrinsic Dimensionality Algorithm (Hidalgo) model.

RandomSegmenter([random_state, n_segments])

Random Segmenter.

Base

BaseSegmenter(axis[, n_segments])

Base class for segmentation algorithms.