make_example_2d_dataframe_collection¶
- make_example_2d_dataframe_collection(n_cases: int = 10, n_timepoints: int = 8, n_labels: int = 2, regression_target: bool = False, random_state: int | None = None, return_y: bool = True) DataFrame | tuple[DataFrame, ndarray][source]¶
Randomly generate 2D DataFrame X and numpy y for testing.
Generates data in ‘pd-wide’ format.
Will ensure there is at least one sample per label if a classification label is being returned (regression_target=False).
- Parameters:
- n_casesint
The number of samples to generate.
- n_timepointsint
The number of features/series length to generate.
- n_labelsint
The number of unique labels to generate.
- regression_targetbool
If True, the target will be a scalar float, otherwise an int.
- random_stateint or None
Seed for random number generation.
- return_ybool, default = True
If True, return the labels as well as the data.
- Returns:
- Xpd.DataFrame
Randomly generated 2D data.
- ynp.ndarray
Randomly generated labels if return_y is True.
Examples
>>> from aeon.testing.data_generation import make_example_2d_dataframe_collection >>> from aeon.utils.validation.collection import get_type >>> data, labels = make_example_2d_dataframe_collection( ... n_cases=2, ... n_timepoints=6, ... n_labels=2, ... random_state=0, ... ) >>> print(data) 0 1 2 3 4 5 0 0.0 1.430379 1.205527 1.089766 0.84731 1.291788 1 2.0 3.567092 3.854651 1.533766 3.16690 2.115580 >>> print(labels) [0 1] >>> get_type(data) 'pd-wide'