ddtw_pairwise_distance¶
- ddtw_pairwise_distance(X: ndarray | list[ndarray], y: ndarray | list[ndarray] | None = None, window: float | None = None, itakura_max_slope: float | None = None) ndarray[source]¶
Compute the DDTW pairwise distance between a set of time series.
- Parameters:
- Xnp.ndarray or List of np.ndarray
A collection of time series instances of shape
(n_cases, n_timepoints)or(n_cases, n_channels, n_timepoints).- ynp.ndarray or List of np.ndarray or None, default=None
A single series or a collection of time series of shape
(m_timepoints,)or(m_cases, m_timepoints)or(m_cases, m_channels, m_timepoints). If None, then the ddtw pairwise distance between the instances of X is calculated.- windowfloat, default=None
The window to use for the bounding matrix. If None, no bounding matrix is used.
- itakura_max_slopefloat, default=None
Maximum slope as a proportion of the number of time points used to create Itakura parallelogram on the bounding matrix. Must be between 0. and 1.
- Returns:
- np.ndarray (n_cases, n_cases)
ddtw pairwise matrix between the instances of X.
- Raises:
- ValueError
If X is not 2D or 3D array when only passing X. If X and y are not 1D, 2D or 3D arrays when passing both X and y. If n_timepoints is less than 2.
Examples
>>> import numpy as np >>> from aeon.distances import ddtw_pairwise_distance >>> # Distance between each time series in a collection of time series >>> X = np.array([[[1, 2, 3]],[[49, 58, 61]], [[73, 82, 99]]]) >>> ddtw_pairwise_distance(X) array([[ 0. , 42.25, 100. ], [ 42.25, 0. , 12.25], [100. , 12.25, 0. ]])
>>> # Distance between two collections of time series >>> X = np.array([[[19, 12, 39]],[[40, 51, 69]], [[79, 28, 91]]]) >>> y = np.array([[[110, 15, 123]],[[14, 150, 116]], [[9917, 118, 29]]]) >>> ddtw_pairwise_distance(X, y) array([[2.09306250e+03, 8.46400000e+03, 5.43611290e+07], [3.24900000e+03, 6.52056250e+03, 5.45271481e+07], [4.73062500e+02, 1.34560000e+04, 5.40078010e+07]])
>>> X = np.array([[[10, 22, 399]],[[41, 500, 1316]], [[117, 18, 9]]]) >>> y_univariate = np.array([100, 11, 199]) >>> ddtw_pairwise_distance(X, y_univariate) array([[ 15129. ], [322624. ], [ 3220.5625]])
>>> # Distance between each TS in a collection of unequal-length time series >>> X = [np.array([1, 2, 3]), np.array([4, 5, 6, 7]), np.array([8, 9, 10, 11, 12])] >>> ddtw_pairwise_distance(X) array([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])