ddtw_cost_matrix¶
- ddtw_cost_matrix(x: ndarray, y: ndarray | None = None, window: float | None = None, itakura_max_slope: float | None = None) ndarray[source]¶
Compute the DDTW cost matrix between two time series.
This involves taking the difference of the series then using the same cost function as DTW.
- Parameters:
- xnp.ndarray
First time series, either univariate, shape
(n_timepoints,), or multivariate, shape(n_channels, n_timepoints).- ynp.ndarray
Second time series, either univariate, shape
(n_timepoints,), or multivariate, shape(n_channels, n_timepoints).- windowfloat, default=None
The window to use for the bounding matrix. If None, no bounding matrix is used.
- itakura_max_slopefloat, default=None
Maximum slope as a proportion of the number of time points used to create Itakura parallelogram on the bounding matrix. Must be between 0. and 1.
- Returns:
- np.ndarray (n_timepoints, m_timepoints)
ddtw cost matrix between x and y.
- Raises:
- ValueError
If x and y are not 1D, or 2D arrays. If n_timepoints or m_timepoints are less than 2.
Examples
>>> import numpy as np >>> from aeon.distances import ddtw_cost_matrix >>> x = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) >>> y = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) >>> ddtw_cost_matrix(x, y) array([[0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.]])