EAggloSegmenter¶
- class EAggloSegmenter(member=None, alpha=1.0, penalty=None)[source]¶
Hierarchical agglomerative estimation of multiple change points.
E-Agglo is a non-parametric clustering approach for multivariate timeseries[R3a0a2f9eddee-1]_, where neighboring segments are sequentially merged_ to maximize a goodness-of-fit statistic. Unlike most general purpose agglomerative clustering algorithms, this procedure preserves the time ordering of the observations.
This method can detect distributional change within an independent sequence, and does not make any distributional assumptions (beyond the existence of an alpha-th moment). Estimation is performed in a manner that simultaneously identifies both the number and locations of change points.
- Parameters:
- memberarray_like (default=None)
Assigns points to the initial cluster membership, therefore the first dimension should be the same as for data. If None it will be initialized to dummy vector where each point is assigned to separate cluster.
- alphafloat (default=1.0)
Fixed constant alpha in (0, 2] used in the divergence measure, as the alpha-th absolute moment, see equation (4) in [1].
- penaltystr or callable or None (default=None)
Function that defines a penalization of the sequence of goodness-of-fit statistic, when overfitting is a concern. If None not penalty is applied. Could also be an existing penalty name, either len_penalty or mean_diff_penalty.
- Attributes:
- merged_array_like
2D array_like outlining which clusters were merged_ at each step.
- gof_float
goodness-of-fit statistic for current clsutering.
- cluster_array_like
1D array_like specifying which cluster each row of input data X belongs to.
Notes
Capabilities ¶ Missing Values
No
Multithreading
No
Univariate
Yes
Multivariate
Yes
Based on the work from [1].
source code based on: https://github.com/cran/ecp/blob/master/R/e_agglomerative.R
paper available at: https://www.tandfonline.com/doi/full/10.1080/01621459. 2013.849605
References
multiple change point analysis of multivariate data.” Journal of the American Statistical Association 109.505 (2014): 334-345.
[2]James, Nicholas A., and David S. Matteson. “ecp: An R package for
nonparametric multiple change point analysis of multivariate data.” arXiv preprint arXiv:1309.3295 (2013).
Examples
>>> from aeon.testing.data_generation import make_example_dataframe_series >>> from aeon.segmentation import EAggloSegmenter >>> X = make_example_dataframe_series(n_channels=2, random_state=10) >>> model = EAggloSegmenter() >>> y = model.fit_predict(X, axis=0)
Methods
clone([random_state])Obtain a clone of the object with the same hyperparameters.
fit(X[, y, axis])Fit time series segmenter to X.
fit_predict(X[, y, axis])Fit segmentation to data and return it.
get_class_tag(tag_name[, raise_error, ...])Get tag value from estimator class (only class tags).
Get class tags from estimator class and all its parent classes.
get_fitted_params([deep])Get fitted parameters.
Sklearn metadata routing.
get_params([deep])Get parameters for this estimator.
get_tag(tag_name[, raise_error, ...])Get tag value from estimator class.
get_tags()Get tags from estimator.
predict(X[, axis])Create amd return segmentation of X.
reset([keep])Reset the object to a clean post-init state.
set_params(**params)Set the parameters of this estimator.
set_tags(**tag_dict)Set dynamic tags to given values.
to_classification(change_points, length)Convert change point locations to a classification vector.
to_clusters(change_points, length)Convert change point locations to a clustering vector.
- clone(random_state=None)[source]¶
Obtain a clone of the object with the same hyperparameters.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning
sklearn.cloneof self. Equal in value totype(self)(**self.get_params(deep=False)).- Parameters:
- random_stateint, RandomState instance, or None, default=None
Sets the random state of the clone. If None, the random state is not set. If int, random_state is the seed used by the random number generator. If RandomState instance, random_state is the random number generator.
- Returns:
- estimatorobject
Instance of
type(self), clone of self (see above)
- fit(X, y=None, axis=1)[source]¶
Fit time series segmenter to X.
If the tag
fit_is_emptyis true, this just sets theis_fittedtag to true. Otherwise, it checksselfcan handleX, formatsXinto the structure required byselfthen passesX(and possiblyy) to_fit.- Parameters:
- XOne of
VALID_SERIES_INPUT_TYPES Input time series to fit a segmenter.
- yOne of
VALID_SERIES_INPUT_TYPESor None, default None Training time series, a labeled 1D series same length as X for supervised segmentation.
- axisint, default = None
Axis along which to segment if passed a multivariate X series (2D input). If axis is 0, it is assumed each column is a time series and each row is a time point. i.e. the shape of the data is
(n_timepoints, n_channels).axis == 1indicates the time series are in rows, i.e. the shape of the data is(n_channels, n_timepoints)`.``axis is Noneindicates that the axis of X is the same asself.axis.
- XOne of
- Returns:
- self
Fitted estimator
- classmethod get_class_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
Get tag value from estimator class (only class tags).
- Parameters:
- tag_namestr
Name of tag value.
- raise_errorbool, default=True
Whether a ValueError is raised when the tag is not found.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found and error is not raised.
- Returns:
- tag_value
Value of the
tag_nametag in cls. If not found, returns an error ifraise_erroris True, otherwise it returnstag_value_default.
- Raises:
- ValueError
if
raise_erroris True andtag_nameis not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> DummyClassifier.get_class_tag("capability:multivariate") True
- classmethod get_class_tags()[source]¶
Get class tags from estimator class and all its parent classes.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tagsclass attribute via nested inheritance. These are not overridden by dynamic tags set byset_tagsor class__init__calls.
- get_fitted_params(deep=True)[source]¶
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
If True, will return the fitted parameters for this estimator and contained subobjects that are estimators.
- Returns:
- fitted_paramsdict
Fitted parameter names mapped to their values.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- get_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
Get tag value from estimator class.
Includes dynamic and overridden tags.
- Parameters:
- tag_namestr
Name of tag to be retrieved.
- raise_errorbool, default=True
Whether a ValueError is raised when the tag is not found.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found and error is not raised.
- Returns:
- tag_value
Value of the
tag_nametag in self. If not found, returns an error ifraise_erroris True, otherwise it returnstag_value_default.
- Raises:
- ValueError
if raise_error is
Trueandtag_nameis not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> d.get_tag("capability:multivariate") True
- get_tags()[source]¶
Get tags from estimator.
Includes dynamic and overridden tags.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tagsclass attribute via nested inheritance and then any overridden and new tags from__init__orset_tags.
- predict(X, axis=1)[source]¶
Create amd return segmentation of X.
- Parameters:
- XOne of
VALID_SERIES_INPUT_TYPES Input time series
- axisint, default = None
Axis along which to segment if passed a multivariate series (2D input) with
n_channelstime series. If axis is 0, it is assumed each row is a time series and each column is a time point. i.e. the shape of the data is(n_timepoints,n_channels).axis == 1indicates the time series are in rows, i.e. the shape of the data is(n_channels, n_timepoints)`.``axis is Noneindicates that the axis of X is the same asself.axis.
- XOne of
- Returns:
- List
Either a list of indexes of X indicating where each segment begins or a list of integers of
len(X)indicating which segment each time point belongs to.
- reset(keep=None)[source]¶
Reset the object to a clean post-init state.
After a
self.reset()call, self is equal or similar in value totype(self)(**self.get_params(deep=False)), assuming no other attributes were kept usingkeep.- Detailed behaviour:
- removes any object attributes, except:
hyper-parameters (arguments of
__init__) object attributes containing double-underscores, i.e., the string “__”
runs
__init__with current values of hyperparameters (result ofget_params)- Not affected by the reset are:
object attributes containing double-underscores class and object methods, class attributes any attributes specified in the
keepargument
- Parameters:
- keepNone, str, or list of str, default=None
If None, all attributes are removed except hyperparameters. If str, only the attribute with this name is kept. If list of str, only the attributes with these names are kept.
- Returns:
- selfobject
Reference to self.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_tags(**tag_dict)[source]¶
Set dynamic tags to given values.
- Parameters:
- **tag_dictdict
Dictionary of tag name and tag value pairs.
- Returns:
- selfobject
Reference to self.
- classmethod to_classification(change_points: list[int], length: int)[source]¶
Convert change point locations to a classification vector.
Change point detection results can be treated as classification with true change point locations marked with 1’s at position of the change point and remaining non-change point locations being 0’s.
For example change points [2, 8] for a time series of length 10 would result in: [0, 0, 1, 0, 0, 0, 0, 0, 1, 0].
- classmethod to_clusters(change_points: list[int], length: int)[source]¶
Convert change point locations to a clustering vector.
Change point detection results can be treated as clustering with each segment separated by change points assigned a distinct dummy label.
For example change points [2, 8] for a time series of length 10 would result in: [0, 0, 1, 1, 1, 1, 1, 1, 2, 2].