parametrize_with_checks¶
- parametrize_with_checks(estimators: list[BaseAeonEstimator | type[BaseAeonEstimator]], use_first_parameter_set: bool = False) Callable[source]¶
Pytest specific decorator for parametrizing aeon estimator checks.
The id of each check is set to be the name of the check with its keyword arguments, including a pprint version of the estimator.
- This allows to use pytest -k to specify which tests to run i.e.
pytest -k check_fit_updates_state
Based on the scikit-learn``parametrize_with_checks function.
- Parameters:
- estimatorslist of aeon BaseAeonEstimator instances or classes
Estimators to generate checks for. If an item is a class, an instance will be created using BaseAeonEstimator._create_test_instance().
- use_first_parameter_setbool, default=False
If True, only the first parameter set from _get_test_params will be used if a class is passed.
- Returns:
- decoratorpytest.mark.parametrize
See also
check_estimatorCheck if estimator adheres to tsml or scikit-learn conventions.
Examples
>>> from aeon.testing.estimator_checking import parametrize_with_checks >>> from aeon.classification.interval_based import TimeSeriesForestClassifier >>> from aeon.regression.interval_based import TimeSeriesForestRegressor >>> @parametrize_with_checks( ... [TimeSeriesForestClassifier, TimeSeriesForestRegressor]) ... def test_aeon_compatible_estimator(check): ... check()