make_example_3d_numpy¶
- make_example_3d_numpy(n_cases: int = 10, n_channels: int = 1, n_timepoints: int = 12, n_labels: int = 2, min_cases_per_label: int = 1, regression_target: bool = False, random_state: int | None = None, return_y: bool = True) ndarray | tuple[ndarray, ndarray][source]¶
Randomly generate 3D numpy X and numpy y data for testing.
Generates data in ‘numpy3D’ format.
Will ensure there is at least one sample per label if a classification label is being returned (regression_target=False).
- Parameters:
- n_casesint
The number of samples to generate.
- n_channelsint
The number of series channels to generate.
- n_timepointsint
The number of features/series length to generate.
- n_labelsint
The number of unique labels to generate.
- min_cases_per_labelint
The minimum number of samples per unique label.
- regression_targetbool
If True, the target will be a scalar float, otherwise an int.
- random_stateint or None
Seed for random number generation.
- return_ybool, default = True
Return the y target variable.
- Returns:
- Xnp.ndarray
Randomly generated 3D data.
- ynp.ndarray
Randomly generated labels if return_y is True.
Examples
>>> from aeon.testing.data_generation import make_example_3d_numpy >>> from aeon.utils.validation.collection import get_type >>> data, labels = make_example_3d_numpy( ... n_cases=2, ... n_channels=2, ... n_timepoints=6, ... n_labels=2, ... random_state=0, ... ) >>> print(data) [[[0. 1.43037873 1.20552675 1.08976637 0.8473096 1.29178823] [0.87517442 1.783546 1.92732552 0.76688304 1.58345008 1.05778984]] [[2. 3.70238655 0.28414423 0.3485172 0.08087359 3.33047938] [3.112627 3.48004859 3.91447337 3.19663426 1.84591745 3.12211671]]] >>> print(labels) [0 1] >>> get_type(data) 'numpy3D'