BaseSimilaritySearch¶
- class BaseSimilaritySearch(distance: str = 'euclidean', distance_args: dict | None = None, inverse_distance: bool = False, normalise: bool = False, speed_up: str = 'fastest', n_jobs: int = 1)[source]¶
Base class for similarity search applications.
- Parameters:
- distancestr, default=”euclidean”
Name of the distance function to use. A list of valid strings can be found in the documentation for
aeon.distances.get_distance_function. If a callable is passed it must either be a python function or numba function with nopython=True, that takes two 1d numpy arrays as input and returns a float.- distance_argsdict, default=None
Optional keyword arguments for the distance function.
- inverse_distancebool, default=False
If True, the matching will be made on the inverse of the distance, and thus, the worst matches to the query will be returned instead of the best ones.
- normalisebool, default=False
Whether the distance function should be z-normalised.
- speed_upstr, default=’fastest’
Which speed up technique to use with for the selected distance function. By default, the fastest algorithm is used. A list of available algorithm for each distance can be obtained by calling the get_speedup_function_names function of the child classes.
- n_jobsint, default=1
Number of parallel jobs to use.
- Attributes:
- X_np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints)
The input time series stored during the fit method.
Notes
For now, the multivariate case is only treated as independent. Distances are computed for each channel independently and then summed together.
Methods
clone([random_state])Obtain a clone of the object with the same hyperparameters.
fit(X[, y])Fit method: data preprocessing and storage.
get_class_tag(tag_name[, raise_error, ...])Get tag value from estimator class (only class tags).
Get class tags from estimator class and all its parent classes.
get_fitted_params([deep])Get fitted parameters.
Sklearn metadata routing.
get_params([deep])Get parameters for this estimator.
Return a dictionnary containing the name of the speedup functions.
get_tag(tag_name[, raise_error, ...])Get tag value from estimator class.
get_tags()Get tags from estimator.
reset([keep])Reset the object to a clean post-init state.
set_params(**params)Set the parameters of this estimator.
set_tags(**tag_dict)Set dynamic tags to given values.
- final fit(X: ndarray, y=None)[source]¶
Fit method: data preprocessing and storage.
- Parameters:
- Xnp.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints)
Input array to be used as database for the similarity search
- yoptional
Not used.
- Returns:
- self
- Raises:
- TypeError
If the input X array is not 3D raise an error.
- abstract get_speedup_function_names()[source]¶
Return a dictionnary containing the name of the speedup functions.
- clone(random_state=None)[source]¶
Obtain a clone of the object with the same hyperparameters.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning
sklearn.cloneof self. Equal in value totype(self)(**self.get_params(deep=False)).- Parameters:
- random_stateint, RandomState instance, or None, default=None
Sets the random state of the clone. If None, the random state is not set. If int, random_state is the seed used by the random number generator. If RandomState instance, random_state is the random number generator.
- Returns:
- estimatorobject
Instance of
type(self), clone of self (see above)
- classmethod get_class_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
Get tag value from estimator class (only class tags).
- Parameters:
- tag_namestr
Name of tag value.
- raise_errorbool, default=True
Whether a ValueError is raised when the tag is not found.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found and error is not raised.
- Returns:
- tag_value
Value of the
tag_nametag in cls. If not found, returns an error ifraise_erroris True, otherwise it returnstag_value_default.
- Raises:
- ValueError
if
raise_erroris True andtag_nameis not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> DummyClassifier.get_class_tag("capability:multivariate") True
- classmethod get_class_tags()[source]¶
Get class tags from estimator class and all its parent classes.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tagsclass attribute via nested inheritance. These are not overridden by dynamic tags set byset_tagsor class__init__calls.
- get_fitted_params(deep=True)[source]¶
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
If True, will return the fitted parameters for this estimator and contained subobjects that are estimators.
- Returns:
- fitted_paramsdict
Fitted parameter names mapped to their values.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- get_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
Get tag value from estimator class.
Includes dynamic and overridden tags.
- Parameters:
- tag_namestr
Name of tag to be retrieved.
- raise_errorbool, default=True
Whether a ValueError is raised when the tag is not found.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found and error is not raised.
- Returns:
- tag_value
Value of the
tag_nametag in self. If not found, returns an error ifraise_erroris True, otherwise it returnstag_value_default.
- Raises:
- ValueError
if raise_error is
Trueandtag_nameis not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> d.get_tag("capability:multivariate") True
- get_tags()[source]¶
Get tags from estimator.
Includes dynamic and overridden tags.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tagsclass attribute via nested inheritance and then any overridden and new tags from__init__orset_tags.
- reset(keep=None)[source]¶
Reset the object to a clean post-init state.
After a
self.reset()call, self is equal or similar in value totype(self)(**self.get_params(deep=False)), assuming no other attributes were kept usingkeep.- Detailed behaviour:
- removes any object attributes, except:
hyper-parameters (arguments of
__init__) object attributes containing double-underscores, i.e., the string “__”
runs
__init__with current values of hyperparameters (result ofget_params)- Not affected by the reset are:
object attributes containing double-underscores class and object methods, class attributes any attributes specified in the
keepargument
- Parameters:
- keepNone, str, or list of str, default=None
If None, all attributes are removed except hyperparameters. If str, only the attribute with this name is kept. If list of str, only the attributes with these names are kept.
- Returns:
- selfobject
Reference to self.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.