AEDRNNNetwork¶
- class AEDRNNNetwork(latent_space_dim=128, temporal_latent_space=False, n_layers_encoder=3, n_layers_decoder=1, dilation_rate_encoder=None, dilation_rate_decoder=None, activation_encoder='relu', activation_decoder=None, n_units_encoder=None, n_units_decoder=None)[source]¶
Auto-Encoder based Dilated Recurrent Neural Networks (DRNN).
- Parameters:
- latent_space_dimint, default = 128
Dimensionality of the latent space.
- temporal_latent_spacebool, default = False
Flag to choose whether the latent space is an MTS or Euclidean space.
- n_layers_encoderint, default = 3
Number of GRU layers in the encoder.
- n_layers_decoderint, default = 1
Number of GRU layers in the decoder.
- dilation_rate_encoderUnion[int, List[int]], default = None
List of dilation rates for each layer of the encoder. If None, default = powers of 2 up to n_stacked.
- dilation_rate_decoderUnion[int, List[int]], default = None
List of dilation rates for each layer of the decoder. If None, default to a list of ones.
- activation_encoderUnion[str, List[str]], default=”relu”
Activation function to use in the GRU layers.
- activation_decoderUnion[str, List[str]], default=None
Activation function of the single GRU layer in the decoder. If None, defaults to relu.
- n_units_encoderList[int], default=”None”
Number of units in each GRU layer of the encoder, by default None. If None, default to [100, 50, 50].
- n_units_decoderList[int], default=”None”
Number of units in each GRU layer of the decoder, by default None. If None, default to two times sum of units of the encoder.
Methods
build_network(input_shape, **kwargs)Build the encoder and decoder networks.
- build_network(input_shape, **kwargs)[source]¶
Build the encoder and decoder networks.
- Parameters:
- input_shapetuple of shape = (n_timepoints (m), n_channels (d))
The shape of the data fed into the input layer.
- **kwargsdict
Additional keyword arguments for building the network.
- Returns:
- encodertf.keras.Model
The encoder model.
- decodertf.keras.Model
The decoder model.