AEDCNNNetwork

class AEDCNNNetwork(latent_space_dim=128, temporal_latent_space=False, n_layers=4, kernel_size=3, activation='relu', n_filters=None, dilation_rate=1, padding_encoder='same', padding_decoder='same')[source]

Establish the Auto-Encoder based structure for a DCN Network.

Dilated Convolutional Neural (DCN) Network based Model for low-rank embeddings.

Parameters:
latent_space_dim: int, default=128

Dimension of the models’s latent space.

temporal_latent_spacebool, default = False

Flag to choose whether the latent space is an MTS or Euclidean space.

n_layers: int, default=4

Number of convolution layers in the autoencoder.

kernel_size: Union[int, List[int]], default=3

Size of the 1D Convolutional Kernel of the encoder. Defaults to a list of length n_layers with kernel_size value.

activation: Union[str, List[str]], default=”relu”

The activation function used by convolution layers of the encoder. Defaults to a list of “relu” for n_layers elements.

n_filters: Union[int, List[int]], default=None

Number of filters used in convolution layers of the encoder. Defaults to a list of multiples of 32 for n_layers elements.

dilation_rate: Union[int, List[int]], default=1

The dilation rate for convolution of the encoder. Defaults to a list of powers of 2 for n_layers elements. dilation_rate greater than 1 is not supported on Conv1DTranspose for some devices/OS.

padding_encoder: Union[str, List[str]], default=”same”

The padding string for the encoder layers. Defaults to a list of “same” for n_layers elements. Valid strings are “causal”, “valid”, “same” or any other Keras compatible string.

padding_decoder: Union[str, List[str]], default=”same”

The padding string for the decoder layers. Defaults to a list of “same” for n_layers elements.

References

[1]

Franceschi, J. Y., Dieuleveut, A., & Jaggi, M. (2019). Unsupervised

scalable representation learning for multivariate time series. Advances in neural information processing systems, 32.

Methods

build_network(input_shape)

Construct a network and return its input and output layers.

build_network(input_shape)[source]

Construct a network and return its input and output layers.

Returns:
modela keras Model.