KASBA¶
- class KASBA(n_clusters: int = 8, distance: str | Callable = 'msm', ba_subset_size: float = 0.5, initial_step_size: float = 0.05, max_iter: int = 300, tol: float = 1e-06, distance_params: dict | None = None, decay_rate: float = 0.1, verbose: bool = False, random_state: int | RandomState | None = None)[source]¶
KASBA clusterer [1].
KASBA is a $k$-means clustering algorithm designed for use with the MSM distance metric [2] however, it can be used with any elastic distance that is a metric. KASBA finds initial clusters using an adapted form of kmeans++ to use elastic distances, a fast assignment step that exploits the metric property to avoid distance calculations in assignment, and an adapted elastic barycentre average that uses a stochastic gradient descent to find the barycentre averages.
- Parameters:
- n_clustersint, default=8
The number of clusters to form as well as the number of centroids to generate.
- distancestr or callable, default=’msm’
The distance metric to use. If a string, must be one of the following: ‘msm’, ‘twe’. The distance measure use MUST be a metric.
- ba_subset_sizefloat, default=0.5
The proportion of the data to use in the barycentre average step. For the first iteration all the data will be used however, on subsequent iterations a subset of the data will be used. This will be a % of the data passed (e.g. 0.5 = 50%). If there are less than 10 data points, all the available data will be used every iteration.
- initial_step_sizefloat, default=0.05
The initial step size for the stochastic gradient descent in the barycentre average step.
- max_iterint, default=300
Maximum number of iterations of the k-means algorithm before it is forcibly stopped.
- tolfloat, default=1e-6
Relative tolerance in regard to Frobenius norm of the difference in the cluster centers of two consecutive iterations to declare convergence.
- distance_paramsdict, default=None
Dictionary containing kwargs for the distance being used. For example if you wanted to specify a cost for MSM you would pass distance_params={“c”: 0.2}. See documentation of aeon.distances for more details.
- decay_ratefloat, default=0.1
The decay rate for the step size in the barycentre average step. The initial_step_size will be multiplied by np.exp(-decay_rate * i) every iteration where i is the current iteration.
- verbosebool, default=False
Verbosity mode.
- random_stateint, np.random.RandomState instance or None, default=None
Determines random number generation for centroid initialization. If int, random_state is the seed used by the random number generator; If np.random.RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
- Attributes:
- cluster_centers_3d np.ndarray
Array of shape (n_clusters, n_channels, n_timepoints)) Time series that represent each of the cluster centers.
- labels_1d np.ndarray
1d array of shape (n_case,) Labels that is the index each time series belongs to.
- inertia_float
Sum of squared distances of samples to their closest cluster center.
- n_iter_int
Number of iterations run.
Notes
Capabilities ¶ Missing Values
No
Multithreading
No
Univariate
Yes
Multivariate
Yes
Unequal Length
No
References
[1]Holder, Christopher & Bagnall, Anthony. (2024). Rock the KASBA: Blazingly Fast and Accurate Time Series Clustering. 10.48550/arXiv.2411.17838.
[2]Stefan A., Athitsos V., Das G.: The Move-Split-Merge metric for time
series. IEEE Transactions on Knowledge and Data Engineering 25(6), 2013.
Examples
>>> import numpy as np >>> from aeon.clustering import KASBA >>> X = np.random.random(size=(10,2,20)) >>> clst= KASBA(distance="msm",n_clusters=2) >>> clst.fit(X) KASBA(n_clusters=2) >>> preds = clst.predict(X)
Methods
clone([random_state])Obtain a clone of the object with the same hyperparameters.
fit(X[, y])Fit time series clusterer to training data.
fit_predict(X[, y])Compute cluster centers and predict cluster index for each time series.
get_class_tag(tag_name[, raise_error, ...])Get tag value from estimator class (only class tags).
Get class tags from estimator class and all its parent classes.
get_fitted_params([deep])Get fitted parameters.
Sklearn metadata routing.
get_params([deep])Get parameters for this estimator.
get_tag(tag_name[, raise_error, ...])Get tag value from estimator class.
get_tags()Get tags from estimator.
predict(X)Predict the closest cluster each sample in X belongs to.
Predicts labels probabilities for sequences in X.
reset([keep])Reset the object to a clean post-init state.
set_params(**params)Set the parameters of this estimator.
set_tags(**tag_dict)Set dynamic tags to given values.
- clone(random_state=None)[source]¶
Obtain a clone of the object with the same hyperparameters.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning
sklearn.cloneof self. Equal in value totype(self)(**self.get_params(deep=False)).- Parameters:
- random_stateint, RandomState instance, or None, default=None
Sets the random state of the clone. If None, the random state is not set. If int, random_state is the seed used by the random number generator. If RandomState instance, random_state is the random number generator.
- Returns:
- estimatorobject
Instance of
type(self), clone of self (see above)
- fit(X, y=None) BaseCollectionEstimator[source]¶
Fit time series clusterer to training data.
- Parameters:
- X3D np.ndarray (any number of channels, equal length series)
of shape (n_cases, n_channels, n_timepoints)
- or 2D np.array (univariate, equal length series)
of shape (n_cases, n_timepoints)
- or list of numpy arrays (any number of channels, unequal length series)
of shape [n_cases], 2D np.array (n_channels, n_timepoints_i), where n_timepoints_i is length of series i
other types are allowed and converted into one of the above.
- y: ignored, exists for API consistency reasons.
- Returns:
- self:
Fitted estimator.
- fit_predict(X, y=None) ndarray[source]¶
Compute cluster centers and predict cluster index for each time series.
Convenience method; equivalent of calling fit(X) followed by predict(X)
- Parameters:
- Xnp.ndarray (2d or 3d array of shape (n_cases, n_timepoints) or shape
(n_cases, n_channels, n_timepoints)). Time series instances to train clusterer and then have indexes each belong to return.
- y: ignored, exists for API consistency reasons.
- Returns:
- np.ndarray (1d array of shape (n_cases,))
Index of the cluster each time series in X belongs to.
- classmethod get_class_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
Get tag value from estimator class (only class tags).
- Parameters:
- tag_namestr
Name of tag value.
- raise_errorbool, default=True
Whether a ValueError is raised when the tag is not found.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found and error is not raised.
- Returns:
- tag_value
Value of the
tag_nametag in cls. If not found, returns an error ifraise_erroris True, otherwise it returnstag_value_default.
- Raises:
- ValueError
if
raise_erroris True andtag_nameis not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> DummyClassifier.get_class_tag("capability:multivariate") True
- classmethod get_class_tags()[source]¶
Get class tags from estimator class and all its parent classes.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tagsclass attribute via nested inheritance. These are not overridden by dynamic tags set byset_tagsor class__init__calls.
- get_fitted_params(deep=True)[source]¶
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
If True, will return the fitted parameters for this estimator and contained subobjects that are estimators.
- Returns:
- fitted_paramsdict
Fitted parameter names mapped to their values.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- get_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
Get tag value from estimator class.
Includes dynamic and overridden tags.
- Parameters:
- tag_namestr
Name of tag to be retrieved.
- raise_errorbool, default=True
Whether a ValueError is raised when the tag is not found.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found and error is not raised.
- Returns:
- tag_value
Value of the
tag_nametag in self. If not found, returns an error ifraise_erroris True, otherwise it returnstag_value_default.
- Raises:
- ValueError
if raise_error is
Trueandtag_nameis not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> d.get_tag("capability:multivariate") True
- get_tags()[source]¶
Get tags from estimator.
Includes dynamic and overridden tags.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tagsclass attribute via nested inheritance and then any overridden and new tags from__init__orset_tags.
- predict(X) ndarray[source]¶
Predict the closest cluster each sample in X belongs to.
- Parameters:
- X3D np.ndarray
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases], 2D np.array(n_channels, n_timepoints_i), wheren_timepoints_iis length of seriesi. Other types are allowed and converted into one of the above.
- Returns:
- np.array
shape ``(n_cases)`, index of the cluster each time series in X. belongs to.
- predict_proba(X) ndarray[source]¶
Predicts labels probabilities for sequences in X.
Default behaviour is to call _predict and set the predicted class probability to 1, other class probabilities to 0. Override if better estimates are obtainable.
- Parameters:
- X3D np.ndarray
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases], 2D np.array(n_channels, n_timepoints_i), wheren_timepoints_iis length of seriesi. Other types are allowed and converted into one of the above.
- Returns:
- y2D array of shape [n_cases, n_classes] - predicted class probabilities
1st dimension indices correspond to instance indices in X 2nd dimension indices correspond to possible labels (integers) (i, j)-th entry is predictive probability that i-th instance is of class j
- reset(keep=None)[source]¶
Reset the object to a clean post-init state.
After a
self.reset()call, self is equal or similar in value totype(self)(**self.get_params(deep=False)), assuming no other attributes were kept usingkeep.- Detailed behaviour:
- removes any object attributes, except:
hyper-parameters (arguments of
__init__) object attributes containing double-underscores, i.e., the string “__”
runs
__init__with current values of hyperparameters (result ofget_params)- Not affected by the reset are:
object attributes containing double-underscores class and object methods, class attributes any attributes specified in the
keepargument
- Parameters:
- keepNone, str, or list of str, default=None
If None, all attributes are removed except hyperparameters. If str, only the attribute with this name is kept. If list of str, only the attributes with these names are kept.
- Returns:
- selfobject
Reference to self.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.